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Common Process Monitoring Goals
in Industry
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* Fundamental
characterization

* Design phase

* Informed and optimized
R&D

* Deployment phase
* Process optimization
= Process control
= Material accounting
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Chemical Characterization:
Optical Spectroscopy

Fibers to
instrument

* Provides chemical information
» |dentification and quantification

= Oxidation State

v Essential information for control of
systems

= Molecular and elemental species

v'Essential information to control general
system behavior (e.g., precipitation,

Molten Salt

species interaction)

» Highly mature technology
» Simplistic integration
* Versatile
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Applications to MC&A in MSRs Qﬁg@ 8)

* MSR systems pose unique
challenges to MC&A analysis

Roadmap Phase 1: Laboratory Phase 2: Collect training

Development Testing set and build models

ol s . . * Identify target analytes and * Complete scoping study for
¢ B Ul I d IN g I'o b u St Cd p d b I | |t Ies fO ' IN- technology needed to optical fingerprints in * Design training set to
1 1 monitor species target salt system: small- capture target and
I I n e a n a |ys | S Of t h e SySte m CO u I d * Outline current state of the scale interfering signatures
p Fovi d e nee d e d | nfo rrm at 10N art and technology gaps for * Design large scale (e.g. * Collect training set
: : monitoring capabilities immersion probe) * Build chemometric models
WI t h (0) Ut (0) p enin t h e SySte m fO r *  Plan technology interrogation mechanism * Validate model
g ra b Ssam p I e COI eCt IoN \ development roadmap j for system infrastructure performance

* Test large scale probe K J
\ response and durability /

Phase 3: Large scale
testing

Phase 4:
Deployment * Identify QA requirements
preparation * Assess technology transfer
options
* Explore approved pathways
to integrate probes

* Provide needed information and
measurement uncertainty for
actinides and other key targets
without placing undue burden on
the MSR system

* Explore options to test
system performancein
larger scale system
mimicking deployment
conditions

* Optimize design and models
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PNNL Capabilities: FY21 Accomplishments
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FY22 Goals and Progress Overview @ 6)
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 M2RS-22PN0401051: Determine Feasibility of Optical Spectroscopy
for Actinide Quantification in MSRs (9/30/2022, on time)

 Collection of optical data (training and validation sets)

e Opportunity to partner with Industry (e.g., TerraPower) to look at
representative salts

 Building chemometric models for accurate/automated data analysis

* Determining uncertainties, limits of detection, etc and comparing to
MC&A needs/requirements
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Collection of Optical Data: Overview Q@@ 5)
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e Optical spectroscopy can provide the complete inventory (e.g. total U)
but can also provide needed insight into chemical complexity of
process

* Indicators of precipitation or interaction that could impact accounting

* Cl based melts
* Fingerprints will be slightly different in F, but approach is the same

* Exploring multiple salt types/temperatures to gain insight into
flexibility of application

* But heavily taking advantage of opportunity to characterize representative
salts provided by industry partner
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Collection of Optical data: U(IV) in NaKMg-Cl
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Collection of Optical data: U(VI) in NaKMg-Cl

Real-time monitoring of conversion from U(IV) to U(VI)
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Collection of Optical data:
U(IV) and U(Il1) in LiK-Cl

 Following cleaning of salt

= Sparging with HCl under vacuum for
6 hrs

* Prior to cleaning impurities from LiCl
(purchased as 99.9% anhydrous)
caused U to very quickly oxidize
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Complex chemistry:
Addition of fission products

« Ability to track unique fingerprints
In presence of interfering species

Nd3* Nd3* + Er3*
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Chemometric Model Building Q&g@@)

Enabling researchers and
operators to understand
complex processes with in situ
and real-time feedback on

process conditions

Data
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Chemometric Model Building

* Initial chemometric model showing accurate analysis of U in both

(IV) and (VI) oxidatio

® U(lll) data
fit of data I
2 |= = —95% conf. int. //,%
Y = 0.9986*X + 5.918¢-07; r° = 0.9986 |/,
1/7
1/7
U(lll) model WA
4
1/7
1/
15 v/
= 1/7
- 1/
© 4
e v/
1/
=] 1/
(72} 7/
© 1/
Q 1r e/
£ g
- 1/
— oy
— 1/
D /7
) 1/
1/7
| 1/
0.5 9/
1/7
1/
1/7
1/7
4
1/7
f
0%/
T I 1 I 1
0 0.5 1 1.5 2
-3
u(lll), known, M x1

)

n states within molten salt environment

0.15 T
@ U(IV)data
fit of data
= = =95% conf. int.
Y =0.9873*X + 0.0009513; r? = 0.9975
7
// /
7
, 4
/
/
7
Vs
= 01p YA
’
- £,
© ’
2 ’
7
=] 7 /’
(/2] 1/,
o Y/
£ “
S A
_— fs
005 - ’/,
> o,
/
’
Y4
’
7
/, /
’
Vs
’
17
’
0 /
1 1
0 0.05 0.1

u(lv), known, M

0.1

o o

=) o

> &®
T

U(VI), measured, M

0.02 -

= = =95% conf. int.
Y = 0.9992*X + 9.35¢-06; r? = 0.9992

U(VI) model

O U(VI) data
fit of data

1 1 | 1 |
0.02 0.04 0.06 0.08 0.1

u(vl), known, M

RMSECV (uncertainty)

U(IV) 0.0014 M
U(VI) 0.0011 M

Continuing to optimize
models




Absorbance

1.5\

600
700

wavelength, nm

800

0

time, hr

25

0.18| |

0.6 [

0.14

012

0.08

0.06

U measured, M

0.04

0.02 |

0.2 — | &

| After 4th

Vi)
(IV) + U(VI))
added

Just prior to
5th addition

After 6t
addition

@



Chemometric Model Building: U3/U4/U6
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* Concluding data set collection A
* Much of the needed sets are complete but § |
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